Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358588

RESUMO

Genetic diversity within a germplasm collection plays a vital role in the success of breeding programs. However, comprehending this diversity and identifying accessions with desirable traits pose significant challenges. This study utilized publicly available data to investigate SNP markers associated with protein and oil content in Brazilian soybeans. Through this research, twenty-two new QTLs (Quantitative Trait Loci) were identified, and we highlighted the substantial influence of Roanoke, Lee and Bragg ancestor on the genetic makeup of Brazilian soybean varieties. Our findings demonstrate that certain markers are being lost in modern cultivars, while others maintain or even increase their frequency. These observations indicate genomic regions that have undergone selection during soybean introduction in Brazil and could be valuable in breeding programs aimed at enhancing protein or oil content.

2.
New Phytol ; 241(2): 878-895, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044565

RESUMO

The establishment of root-knot nematode (RKN; Meloidogyne spp.) induced galls in the plant host roots likely involves a wound-induced regeneration response. Confocal imaging demonstrates physical stress or injury caused by RKN infection during parasitism in the model host Arabidopsis thaliana. The ERF115-PAT1 heterodimeric transcription factor complex plays a recognized role in wound-induced regeneration. ERF115 and PAT1 expression flanks injured gall cells likely driving mechanisms of wound healing, implying a local reactivation of cell division which is also hypothetically involved in gall genesis. Herein, functional investigation revealed that ectopic ERF115 expression resulted in premature induction of galls, and callus formation adjacent to the expanding female RKN was seen upon PAT1 upregulation. Smaller galls and less reproduction were observed in ERF115 and PAT1 knockouts. Investigation of components in the ERF115 network upon overexpression and knockdown by qRT-PCR suggests it contributes to steer gall wound-sensing and subsequent competence for tissue regeneration. High expression of CYCD6;1 was detected in galls, and WIND1 overexpression resulted in similar ERF115OE gall phenotypes, also showing faster gall induction. Along these lines, we show that the ERF115-PAT1 complex likely coordinates stress signalling with tissue healing, keeping the gall functional until maturation and nematode reproduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tylenchoidea , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tylenchoidea/fisiologia
3.
Planta ; 257(2): 28, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592255

RESUMO

MAIN CONCLUSION: Inbred line 11-133 of popcorn showed the lowest apoplast Al and total Al concentrations and Al-lumogallion complex, associated with a more efficient antioxidant system, mainly due to glutathione metabolism. Popcorn (Zea mays L. var. everta) is largely intended for human consumption. About 40% of the world's arable soils are acidic. In soils acidic, aluminum (Al) ionizes producing the trivalent cation, which is highly toxic to plants. Hence, this work aimed to: (1) evaluate the Al toxicity sites and its effect on the structure of the root tips, (2) quantify Al concentrations in the apoplast and symplast of the roots, and (3) to elucidate the modulation on the activity of antioxidant enzymes and metabolites of the ascorbate-glutathione cycle in two popcorn inbred lines (ILs) 11-133 and 11-60, classified as tolerant and sensitive to this metal, respectively. Aluminum toxicity did not affect the shoot growth; however, there was a yellowing of the oldest leaf blade only in 11-60. The better performance of 11-133 is related to lower apoplastic and total Al concentrations and Al accumulation in the root associated with a lower fluorescence of Al-lumogallion complex at the root tip, indicating the presence of mechanisms of chelation with this metal. Consequently, this IL showed less change in root morphoanatomy and lower reactive oxygen species and malondialdehyde content, which are associated with a more efficient enzymatic and non-enzymatic system, mainly due to the higher content of the glutathione metabolite and the higher activities of superoxide dismutase, monodehydroascorbate reductase, dehydroascorbate reductase, γ-glutamylcysteine synthetase, and glutathione peroxidase enzymes. Thus, these findings illustrated above indicate how internal mechanisms of detoxification respond to Al in popcorn, which can be used as tolerance biomarkers.


Assuntos
Alumínio , Antioxidantes , Humanos , Antioxidantes/metabolismo , Alumínio/toxicidade , Estresse Oxidativo , Catalase/metabolismo , Ácido Ascórbico/metabolismo , Oxirredução , Glutationa , Solo , Raízes de Plantas/metabolismo
4.
Physiol Mol Biol Plants ; 28(11-12): 2085-2098, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573146

RESUMO

In acidic soil, aluminum (Al) ionizes into trivalent cation and becomes highly toxic to plants. Thus, the objectives of this work were (i) to evaluate the Al concentration and identify sites of Al toxicity and its effect on the structure on rice root tips and (ii) to elucidate the adjustments involved in the activities/contents of enzymes/compounds in the roots against Al. For this, two genotypes with contrasting Al tolerance were used. Our results showed that the root length of the tolerant genotype was not affected after Al exposure. We also observed that both the genotypes used strategies to avoid Al uptake, such as the overlap of P and Al in the tolerant genotype and the presence of border cells in the sensitive genotype, which proved inefficient. In the tolerant genotype, other external Al detoxification mechanisms may have contributed to the lower Al concentration in roots and lower fluorescence of the Al-lumogallion complex. Additionally, both genotypes present the activation of key enzymes to decrease oxidative stress, such as CAT, POX, APX, and DHAR, and a more reducing redox environment, mainly due to the increase in the AA/DHA ratio. However, higher total ascorbate, AA, total glutathione, and GSH contents associated with higher SOD, GPX, and GR activities contributed to the reduction of oxidative stress in the tolerant genotype after Al exposure. Furthermore, there was a strong association between the sensitive genotype to Al concentration, O2 •- content, and MDA amount; therefore, these traits can be used as sensitivity indicators in Al studies.

5.
PeerJ ; 10: e13118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321407

RESUMO

Background: Soybean is the main oilseed crop grown in the world; however, drought stress affects its growth and physiology, reducing its yield. The objective of this study was to characterize the physiological, metabolic, and genetic aspects that determine differential resistance to water deficit in soybean genotypes. Methods: Three soybean genotypes were used in this study, two lineages (L11644 and L13241), and one cultivar (EMBRAPA 48-C48). Plants were grown in pots containing 8 kg of a mixture of soil and sand (2:1) in a greenhouse under sunlight. Soil moisture in the pots was maintained at field capacity until the plants reached the stage of development V4 (third fully expanded leaf). At this time, plants were subjected to three water treatments: Well-Watered (WW) (plants kept under daily irrigation); Water Deficit (WD) (withholding irrigation until plants reached the leaf water potential at predawn of -1.5 ± 0.2 MPa); Rewatered (RW) (plants rehydrated for three days after reached the water deficit). The WW and WD water treatments were evaluated on the eighth day for genotypes L11644 and C48, and on the tenth day for L13241, after interruption of irrigation. For the three genotypes, the treatment RW was evaluated after three days of resumption of irrigation. Physiological, metabolic and gene expression analyses were performed. Results: Water deficit inhibited growth and gas exchange in all genotypes. The accumulation of osmolytes and the concentrations of chlorophylls and abscisic acid (ABA) were higher in L13241 under stress. The metabolic adjustment of lineages in response to WD occurred in order to accumulate amino acids, carbohydrates, and polyamines in leaves. The expression of genes involved in drought resistance responses was more strongly induced in L13241. In general, rehydration provided recovery of plants to similar conditions of control treatment. Although the C48 and L11644 genotypes have shown some tolerance and resilience responses to severe water deficit, greater efficiency was observed in the L13241 genotype through adjustments in morphological, physiological, genetic and metabolic characteristics that are combined in the same plant. This study contributes to the advancement in the knowledge about the resistance to drought in cultivated plants and provides bases for the genetic improvement of the soybean culture.


Assuntos
Folhas de Planta , /genética , Folhas de Planta/genética , Ácido Abscísico/metabolismo , Solo , Regulação da Expressão Gênica
6.
Biochem Genet ; 60(3): 937-952, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34554351

RESUMO

Soybean oil is the second most-produced vegetable oil worldwide. To enhance the nutritional quality and oxidative stability of soybean oil, many soybean breeding programs are trying to increase oleic acid content and reduce linoleic and linolenic acid contents. The fatty acid profile of soybean oil is controlled by many genes, including those which code for omega-3 and omega-6 desaturases. Mutations in GmFAD2-1 and GmFAD3 genes are widely studied and their combinations can produce soybean oil with high oleic and low linoleic and linolenic content. However, few studies evaluate the effect of these mutations on gene expression. Therefore, the present study sought to identify reference genes, evaluate the expression of GmFAD2-1 and GmFAD3 seed desaturase genes in thirteen wild-type and mutated soybean accessions, and associate the expression patterns with fatty acid composition and with the GmFAD2-1 and GmFAD3 genotypes. GmCONS7 and GmUKN2 were identified as the best reference genes for combined use to normalize data. The GmFAD2-1A mutation of PI603452 accession was associated with a decrease in gene expression of GmFAD2-1A; however, downregulation may not be due to the truncated enzyme structure alone. These results suggested that there are factors other than GmFAD2-1A and GmFAD2-1B that have a considerable effect on oleic content, at least in soybeans with mutations in these two genes.


Assuntos
Óleo de Soja , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácido Oleico/análise , Ácido Oleico/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , /metabolismo
7.
Environ Sci Pollut Res Int ; 28(17): 21334-21346, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411283

RESUMO

The herbicide glyphosate can cause severe ecotoxicological effects on non-target organisms. Eugenia uniflora L. (Myrtaceae) is very important for in situ environmental biomonitoring due to its wide distribution in the Atlantic Forest biome. Thus, this study aimed to evaluate the response of E. uniflora leaves to glyphosate. Eight-month-old plants were exposed to an aerial application of the herbicide at concentrations of 0, 144, 432, 864, and 1440 g a. e. ha-1 (grams of acid equivalent per hectare). Evaluations were performed on the 12th day after the glyphosate application (DAA). An accumulation of shikimic acid in the leaves of E. uniflora was observed. Glyphosate altered the photosynthetic parameters of the treated plants, with a drastic decrease in the photosynthetic rate, stomatal conductance, transpiration, and pigment content. There was an increase in Ci/Ca, lipid peroxidation, and electrolyte extravasation levels. Glyphosate also promoted ultrastructural, anatomical and visible damage to the E. uniflora leaves. Our findings indicate that glyphosate is phytotoxic to the native species E. uniflora at the tested doses. The presence of visible damage suggests that E. uniflora has remarkable potential as a bioindicator of glyphosate in the environment, making it a possible species for future biomonitoring projects.


Assuntos
Eugenia , Hepatite C Crônica , Herbicidas , Brasil , Ecossistema , Florestas , Glicina/análogos & derivados , Herbicidas/toxicidade , Folhas de Planta
8.
Int J Phytoremediation ; 22(4): 404-411, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31538487

RESUMO

Glutathione is essential for plant tolerance to arsenic but few studies have focused on the coordination between the enzymes involved in its metabolism. We exposed Pistia stratiotes to four treatments (control, 5, 10 and 20 µM AsIII) for 24 h to evaluate the role of glutathione metabolism in arsenic response and determined the arsenic uptake, growth, membrane integrity, glutathione concentration and enzyme activities (γ-glutamyl-cysteine synthetase, glutathione reductase, glutathione peroxidase, and glutathione-S-transferase). Despite absorbing high concentrations of AsIII, plants maintained growth and cell membrane integrity when exposed to concentrations of up to 10 µM AsIII. The maintenance of these parameters involved glutathione concentration increase due to an increase in its biosynthetic pathway (higher γ-glutamyl-cysteine synthetase). In addition, an increase in the activity of glutathione reductase, glutathione peroxidase and glutathione-S-transferase also contributed to the conserve the cellular homeostasis. However, at the concentration of 20 µM AsIII, the high toxicity of AsIII affected glutathione concentration and glutathione metabolizing enzymes activities, which resulted in drastic decrease in growth and damage to cell membranes. These results showed that not only the glutathione concentration but also the coordination of the enzymes involved in the synthesis, oxidation and reduction pathways of glutathione is essential for AsIII tolerance.


Assuntos
Araceae , Arsênio , Arsenitos , Biodegradação Ambiental , Glutationa
9.
Adv Pharm Bull ; 8(1): 85-95, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29670843

RESUMO

Purpose: Biofilm growth exerts a negative impact on industry and health, necessitating the development of strategies to control. The objective of this work was study the lytic activity of the phage isolated from the sewage network in the formation and degradation of Escherichia coli biofilms. Methods: E. coli cultures were incubated in 96-well polystyrene microplates under controlled conditions to evaluate the biofilm formation. The E. coli cultures and established biofilms were treated with the suspensions of the vB_EcoM-UFV017 (EcoM017) bacteriophage obtained from sewage for 24 hours. The E. coli bacterial density was measured using absorbance at 600 nm and the biofilms were measured by crystal violet staining. Polystyrene coupons were used as support for Scanning Electron Microscopy and Confocal Microscopy to evaluate biofilm formation. Results: The E. coli strains formed biofilms in polystyrene microplates after 48 hours' incubation. The highest EcoM017 phage titer, in the prevention and degradation experiments, reduced the bacterial growth and the quantity of biofilm formed by E. coli in 90.0% and 87.5%, respectively. The minimum dose capable of reducing the biofilms of this bacterium was 101 PFU/mL after 24 hours. The preformed E. coli biofilm mass was reduced 79% post exposure to the phage in the degradation assay. Microscopic analysis confirmed the results obtained in the plates assays. Conclusion: The EcoM017 phage prevented biofilm formation and degraded the E. coli-established ones. The EcoM017 phage isolated from sewage can reduce bacterial attachment and lyse the E. coli associated biofilm cells, offering biotechnological potential applicability for this phage.

11.
Front Plant Sci ; 8: 516, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469622

RESUMO

High arsenic (As) concentrations are toxic to all the living organisms and the cellular response to this metalloid requires the involvement of cell signaling agents, such as nitric oxide (NO). The As toxicity and NO signaling were analyzed in Pistia stratiotes leaves. Plants were exposed to four treatments, for 24 h: control; SNP [sodium nitroprusside (NO donor); 0.1 mg L-1]; As (1.5 mg L-1) and As + SNP (1.5 and 0.1 mg L-1, respectively). The absorption of As increased the concentration of reactive oxygen species and triggered changes in the primary metabolism of the plants. While photosynthesis and photorespiration showed sharp decrease, the respiration process increased, probably due to chemical similarity between arsenate and phosphate, which compromised the energy status of the cell. These harmful effects were reflected in the cellular structure of P. stratiotes, leading to the disruption of the cells and a possible programmed cell death. The damages were attenuated by NO, which was able to integrate central plant physiological processes, with increases in non-photochemical quenching and respiration rates, while the photorespiration level decreased. The increase in respiratory rates was essential to achieve cellular homeostasis by the generation of carbon skeletons and metabolic energy to support processes involved in responses to stress, as well to maintaining the structure of organelles and prevent cell death. Overall, our results provide an integrated view of plant metabolism in response to As, focusing on the central role of NO as a signaling agent able to change the whole plant physiology.

12.
Int J Phytoremediation ; 16(2): 123-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24912205

RESUMO

Effect of nitric oxide (NO) in mitigating stress induced by arsenic (As) was assessed in Pistia stratiotes, with NO supplied as sodium nitroprusside (SNP). Plants were exposed to four treatments: control, SNP (0.1 mg L(-1)), As (1.5 mg L(-1)), As + SNP (1.5 and 0.1 mg L(-1)), for seven days (analyses of growth, absorption of As and mineral nutrients) and for 24 h (analyses of concentration of reactive oxygen intermediates (ROIs), antioxidant capacity and photosynthesis). P. stratiotes accumulated high concentrations of As and this accumulation wasn't affected by the addition of SNP, but the tolerance index of the plant to As increased. SNP attenuated effects of As on the absorption of mineral nutrients (Ca, Fe, Mn, and Mg), but not for phosphorus, and maintained concentrations of ROIs to normal levels, probably due to the increase in antioxidant capacity. The As damaged the photosynthesis by the decrease in pigment contents and by disturbance the photochemical (loss of PSII efficiency and increases in non-photochemical quenching coefficient) and biochemical (reductions in carbon assimilation, increase in the C(i)/C(a) and phi(PSII)/phi(CO2) ratios) steps. The addition of SNP restored these parameters to normal levels. Thus, NO was able to increasing the resistance of P. stratiotes to As.


Assuntos
Araceae/efeitos dos fármacos , Arsênio/toxicidade , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Antioxidantes/análise , Antioxidantes/metabolismo , Araceae/crescimento & desenvolvimento , Araceae/fisiologia , Arsênio/análise , Biodegradação Ambiental , Clorofila/metabolismo , Hidroponia , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...